If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2+13m-7=0
a = 2; b = 13; c = -7;
Δ = b2-4ac
Δ = 132-4·2·(-7)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-15}{2*2}=\frac{-28}{4} =-7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+15}{2*2}=\frac{2}{4} =1/2 $
| 5u2+10u=0 | | 0.75+2(x0.5)=3x-0.4 | | 0.5+-4=x-0.8 | | x+(x+2)+((2+x)+4)=196 | | X^2+40x-235=0 | | 8.3(p-4)=2p | | 14x=3(9) | | 3^1-x=27 | | 13x-23=119 | | 16+2u=10u | | +8x-10=29x+22-x | | x-75x=9 | | x+12=4x+-18=3x-4=180 | | 9x3+x=27 | | 3(-5x-2)=-4-15x | | 3x-5+x=4x-5 | | 68=10x+8 | | -4x+10=6x+(-4) | | 12x/5=12 | | -10x-5=11-2x | | 3(x+5)+10=2(5x+8) | | 12x+12=12+10x | | 1/6n+2=-2/3 | | 1/6n-2=-2/3 | | x+3x=74 | | p/6-10=15 | | -52+9x=-26+3x | | .67x-4=10 | | 28x+12=6+49x | | x+3x+1=9 | | n=3+4≥–2 | | 188=m+89 |